Please follow previous discussion (here) for the history of thoughts on Inflation and how and why New Keynesian Phillip Curve (NKPC) appear in the macroeconomic models and how they are different/similar to Keynesian and/or Rational Expectationist School of thought. Derivation can be found (here). In this this blog we will how to solve the data fitting problem of NKPC via Modified NKPC using Wage Staggering model then see the model of Menu cost (here) to theoretically model "why price in the first place is sticky?"
Another approach to model wage/price stickiness is staggered contracts models of Stanley Fischer (1977) and John Taylor (1979, 1980). and Fuhrer and Moore (1995). However, Fischer and Taylor approach don't exhibit inflation persistence while simple modifications proposed by Fuhrer and Moore incorporates the inflation persistence.
Real wage is defined as nominal wage adjusted for price and when we consider their logarithmic transformation, we can define log of real wage ${{\varphi }_{t}}={{x}_{t}}-{{p}_{t}}$, where ${{x}_{t}}$ is log of the nominal value of the wage contract and ${{p}_{t}}$ is log of price level. Usually, firms and workers negotiate labor contracts once a year which specifies fixed nominal wages for two periods. Then the average real wage is ${{V}_{t}}=\tfrac{1}{2}\left( {{\varphi }_{t}}+{{\varphi }_{t-1}} \right)$.
Taylor (1980) assumed that contract wages ${{\varphi }_{t}}$ are set as the average of the lagged and expected future $\tfrac{1}{2}\left( {{V}_{t}}+{{E}_{t}}{{V}_{t+1}} \right)$ adjusted for excess demand ${{y}_{t}}$. Then, Taylor's contracted wage is ${{\varphi }_{t}}=\tfrac{1}{2}\left( {{V}_{t}}+{{E}_{t}}{{V}_{t+1}} \right)+k{{y}_{t}}$, substituting values of ${{V}_{t}}$ as $\tfrac{1}{2}\left( {{\varphi }_{t}}+{{\varphi }_{t-1}} \right)$and ${{E}_{t}}{{V}_{t+1}}$ as ${{E}_{t}}\left[ \tfrac{1}{2}\left( {{\varphi }_{t+1}}+{{\varphi }_{t}} \right) \right]$ and simplifying \[{{\varphi }_{t}}=\frac{1}{2}\left( \left[ \frac{1}{2}\left( {{\varphi }_{t}}+{{\varphi }_{t-1}} \right) \right]+{{E}_{t}}\left[ \frac{1}{2}\left( {{\varphi }_{t+1}}+{{\varphi }_{t}} \right) \right] \right)+k{{y}_{t}}\] \[{{\varphi }_{t}}=\frac{1}{2}\left( \frac{1}{2}{{\varphi }_{t}}+\frac{1}{2}{{\varphi }_{t-1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t+1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t}} \right)+k{{y}_{t}}\] \[{{\varphi }_{t}}=\frac{1}{2}\left( \frac{1}{2}{{\varphi }_{t}}+\frac{1}{2}{{\varphi }_{t-1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t+1}}+\frac{1}{2}{{\varphi }_{t}} \right)+k{{y}_{t}}\] \[{{\varphi }_{t}}=\frac{1}{2}\left( \frac{1}{2}{{\varphi }_{t-1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t+1}}+{{\varphi }_{t}} \right)+k{{y}_{t}}\] \[{{\varphi }_{t}}=\left( \frac{1}{2}{{\varphi }_{t-1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t+1}} \right)+2k{{y}_{t}}\] This is known as Taylor's contracting equation. Substituting ${{\varphi }_{t}}={{x}_{t}}-{{p}_{t}}$ relation in Taylor's contracting equation we can derive: \[{{\varphi }_{t}}=\left( \frac{1}{2}{{\varphi }_{t-1}}+\frac{1}{2}{{E}_{t}}{{\varphi }_{t+1}} \right)+2k{{y}_{t}}\] \[{{x}_{t}}-{{p}_{t}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+{{E}_{t}}{{x}_{t+1}}-{{E}_{t}}{{p}_{t+1}} \right)+2k{{y}_{t}}\] Since ${{p}_{t}}=\tfrac{1}{2}({{x}_{t}}+{{x}_{t-1}})$, ${{p}_{t+1}}=\tfrac{1}{2}({{x}_{t+1}}+{{x}_{t}})$ and ${{E}_{t}}{{p}_{t+1}}=\tfrac{1}{2}({{E}_{t}}{{x}_{t+1}}+{{x}_{t}})$, then, substituting these values we can get: \[{{x}_{t}}-{{p}_{t}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+{{E}_{t}}{{x}_{t+1}}-{{E}_{t}}{{p}_{t+1}} \right)+2k{{y}_{t}}\] \[{{x}_{t}}-\left[ 0.5({{x}_{t}}+{{x}_{t-1}}) \right]=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+{{E}_{t}}{{x}_{t+1}}-{{E}_{t}}\left[ 0.5({{E}_{t}}{{x}_{t+1}}+{{x}_{t}}) \right] \right)+2k{{y}_{t}}\] \[{{x}_{t}}-0.5{{x}_{t}}-0.5{{x}_{t-1}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+{{E}_{t}}{{x}_{t+1}}-0.5{{E}_{t}}{{x}_{t+1}}-0.5{{x}_{t}} \right)+2k{{y}_{t}}\] \[{{x}_{t}}-0.5{{x}_{t}}-0.5{{x}_{t-1}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+0.5{{E}_{t}}{{x}_{t+1}}-0.5{{x}_{t}} \right)+2k{{y}_{t}}\] As, ${{E}_{t}}{{x}_{t+1}}=2{{E}_{t}}{{p}_{t+1}}-{{x}_{t}}$ \[{{x}_{t}}-0.5{{x}_{t}}-0.5{{x}_{t-1}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+0.5(2{{E}_{t}}{{p}_{t+1}}-{{x}_{t}})-0.5{{x}_{t}} \right)+2k{{y}_{t}}\] \[{{x}_{t}}-0.5{{x}_{t}}-0.5{{x}_{t-1}}=\frac{1}{2}\left( {{x}_{t-1}}-{{p}_{t-1}}+{{E}_{t}}{{p}_{t+1}}-{{x}_{t}} \right)+2k{{y}_{t}}\]
\[{{x}_{t}}-0.5{{x}_{t}}-0.5{{x}_{t-1}}=0.5{{x}_{t-1}}-0.5{{p}_{t-1}}+0.5{{E}_{t}}{{p}_{t+1}}-0.5{{x}_{t}}+2k{{y}_{t}}\] \[{{x}_{t}}-0.5{{x}_{t-1}}-0.5{{x}_{t-1}}=-0.5{{p}_{t-1}}+0.5{{E}_{t}}{{p}_{t+1}}+2k{{y}_{t}}\] \[{{x}_{t}}-{{x}_{t-1}}=\frac{1}{2}\left( {{E}_{t}}{{p}_{t+1}}-{{p}_{t-1}} \right)+2k{{y}_{t}}\] \[\Delta {{x}_{t}}=\frac{1}{2}\left( {{E}_{t}}{{p}_{t+1}}-{{p}_{t-1}} \right)+2k{{y}_{t}}\] Adding and subtracting ${{P}_{t}}$ in this equation: \[\Delta {{x}_{t}}=\tfrac{1}{2}\left( {{E}_{t}}{{p}_{t+1}}+{{p}_{t}}-{{p}_{t}}-{{p}_{t-1}} \right)+2k{{y}_{t}}\] which is same as: \[\Delta {{x}_{t}}=\tfrac{1}{2}\left( \underbrace{{{E}_{t}}{{\pi }_{t+1}}}_{{{E}_{t}}{{p}_{t+1}}-{{p}_{t}}}+\underbrace{{{\pi }_{t}}}_{{{p}_{t}}-{{p}_{t-1}}} \right)+2k{{y}_{t}}\]. Now, let's define inflation ${{\pi }_{t}}={{p}_{t}}-{{p}_{t-1}}$, substituting ${{p}_{t}}=\tfrac{1}{2}({{x}_{t}}+{{x}_{t-1}})$ and${{p}_{t-1}}=\tfrac{1}{2}({{x}_{t-1}}+{{x}_{t-2}})$in it we get: ${{\pi }_{t}}=0.5{{x}_{t}}-0.5{{x}_{t-1}}+0.5{{x}_{t-1}}-0.5{{x}_{t-2}}=0.5(\Delta {{x}_{t}})+0.5(\Delta {{x}_{t-1}})$. Now substituting the values of $\Delta {{x}_{t}}$ and $\Delta {{x}_{t-1}}$we get: \[{{\pi }_{t}}=0.5(\Delta {{x}_{t}})+0.5(\Delta {{x}_{t-1}})\Delta {{x}_{t}}\] \[{{\pi }_{t}}=0.5\left[ \tfrac{1}{2}\left( {{E}_{t}}{{\pi }_{t+1}}+{{\pi }_{t}} \right)+2k{{y}_{t}} \right]+0.5\left[ \tfrac{1}{2}\left( {{E}_{t-1}}{{\pi }_{t}}+{{\pi }_{t-1}} \right)+2k{{y}_{t-1}} \right]\] \[{{\pi }_{t}}=\tfrac{1}{4}{{E}_{t}}{{\pi }_{t+1}}+\tfrac{1}{4}{{\pi }_{t}}+k{{y}_{t}}+\tfrac{1}{4}{{E}_{t-1}}{{\pi }_{t}}+\tfrac{1}{4}{{\pi }_{t-1}}+k{{y}_{t-1}}\] \[{{\pi }_{t}}-\tfrac{1}{4}{{\pi }_{t}}=\tfrac{1}{4}{{E}_{t}}{{\pi }_{t+1}}+k{{y}_{t}}+\tfrac{1}{4}{{E}_{t-1}}{{\pi }_{t}}+\tfrac{1}{4}{{\pi }_{t-1}}+k{{y}_{t-1}}\] \[\tfrac{3}{4}{{\pi }_{t}}=\tfrac{1}{4}{{E}_{t}}{{\pi }_{t+1}}+k{{y}_{t}}+\tfrac{1}{4}{{E}_{t-1}}{{\pi }_{t}}+\tfrac{1}{4}{{\pi }_{t-1}}+k{{y}_{t-1}}\] \[{{\pi }_{t}}=\tfrac{1}{3}{{E}_{t}}{{\pi }_{t+1}}+\tfrac{1}{3}k{{y}_{t}}+\tfrac{1}{3}{{E}_{t-1}}{{\pi }_{t}}+\tfrac{1}{3}{{\pi }_{t-1}}+\tfrac{1}{3}k{{y}_{t-1}}\] \[{{\pi }_{t}}=\tfrac{1}{3}{{E}_{t}}{{\pi }_{t+1}}+\tfrac{1}{3}{{E}_{t-1}}{{\pi }_{t}}+\tfrac{1}{3}{{\pi }_{t-1}}+\tfrac{1}{3}\left( k{{y}_{t}}+k{{y}_{t-1}} \right)\] This results is very profound especially for two reasons: one it complements the NKPC literature to explain the inflation persistence and another it explains the structural relationship rather than the reduced form (accelerationist approach).
Please follow previous discussion (here) for the history of thoughts on Inflation and how and why New Keynesian Phillip Curve (NKPC) appear in the macroeconomic models and how they are different/similar to Keynesian and/or Rational Expectationist School of thought. Derivation can be found (here). In this this blog we will how to solve the data fitting problem of NKPC via Modified NKPC using Wage Staggering model then see the model of Menu cost (here) to theoretically model "why price in the first place is sticky?"